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Arbitrary-Shaped Building Boundary-Aware
Detection with Pixel Aggregation Network

Xin Jiang, Xinchang Zhang, Qinchuan Xin, Xu Xi, and Pengcheng Zhang

Abstract—Large-scale building extraction is an essential work
in the field of remote sensing image analysis. The high-resolution
image extraction methods based on deep learning have achieved
state-of-the-art performance. However, most of the previous work
has focused on region accuracy rather than boundary quality.
Aiming at the low accuracy problems and incomplete boundary
of the building extraction method, we propose a predictive
optimization architecture, BAPANet. Notably, the architecture
consists of an encoder-decoder network and residual refinement
modules responsible for prediction and refinement. The objective
function optimizes the network in the form of three levels (pixel,
feature map, and patch) by fusing three loss functions: binary
cross-entropy (BCE), intersection over-union (IoU) and structural
similarity (SSIM). The five public datasets’ experimental results
show that the extraction method in this paper has high region
accuracy, and the boundary of buildings is clear and complete.

Index Terms—Building extraction, high-resolution, boundary
quality, structural similarity.

I. INTRODUCTION

W ITH the development of spatial data acquisition tech-
nology and increasing resources of databases, geospa-

tial data acquisition methods show the characteristics of multi-
platform, multi-sensor, and multi-angle. The issue of acquir-
ing data rapidly and extracting information more effectively
from different sources for analysis becomes essential. As an
essential component of a city, buildings are widely used in
many applications such as urban planning [1], cartography
[2], civil-military emergency response [3]. The realization of
automatic, intelligent, reliable, and accurate building extrac-
tion has application value for the acquisition and update of
primary geographic data because of the complexity of remote
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sensing imaging mechanism, spectrum, texture, and contour
of buildings.

Traditionally, based on the experiential feature to express
”what is a building” and creating a corresponding feature
set for automatic recognition and extraction of buildings.
The commonly used index including spectrum [5-6], edge
[7], shape [8], texture [9], shadow [10], height [11] and
semantics [12]. However, these features change significantly
with seasons, lighting, atmospheric conditions, sensor quality,
observation scale, building style, and environment. As a result,
empirical features often only deal with specific data rather than
being genuinely automated. In recent years, with the rapid
development of computer hardware technology, deep learning
methods based on convolutional neural networks (CNNs) have
shown great application potential in object detection [13],
image segmentation [14], text recognition [15] and other fields.
The advantage of CNNs that it introduces the concept of
end-to-end learning, which automatically extracts the most
descriptive and remarkable features of the dataset. The neural
network is quite suitable in the remote sensing image for
its good generalization ability and gradually substitutes the
traditional artificially designed method.

Recently, the image semantic segmentation algorithm based
on Fully Convolutional Networks (FCNs) is widely used in
building extraction. FCNs does not use the full connection
layer to construct a set of predictive feature vectors after
multi-layer convolution and pooling operations. Instead, the
deconvolution operation is to obtain a result with the same res-
olution as the input image. It prevents spatial information from
being lost during the propagation process in the image. The
semantic segmentation algorithm is prominent in the extraction
of buildings. For example, Maggiori [16] and Huang [17]
used FCNs and its variants to extract buildings. The SRI-Net
proposed by Liu [18] accurately detects large buildings that are
easy to be missed while maintaining the global morphology
identical and local details. Zhang et al. [19] proposed adaptive
segmentation and developed a multistage classifier to improve
buildings’ extraction accuracy further. Zhao [20] constructed a
multi-scale pyramid based on multi-scale images to mine the
spatial information. Following the idea of FCNs semantic seg-
mentation, Badrinarayanan [21] proposed the SegNet network,
which fuses the Encoder-Decoder structure and the features
of skip connection, the generality of the model allowed it
to get more accurate feature maps.Audebert [22] designed a
multi-kernel convolution layer to improve the original SegNet
network model, given the multi-scale features of imagery.Xu
[23] and Chen [24] extracted image features based on ResNet
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Fig.1. A ”building” image from the Inria dataset (left) and its ground truth label image (middle). The difficulty level of pixels
is visualized in the right image, where the pixels are divided into three sets, including the ”easy”, ”moderate”, and ”extremely
hard” sets.

[25] to improve segmentation accuracy. Huang [26] proposed
a new post-processing framework for building detection to
extend to complex environments. Yang [27] accurately estab-
lished the United States building distribution map based on
various training sets from different geographical regions. For
the multi-source features, Sun [28], Maltezos [29], and Huang
[30] proposed a deep neural network model that combines
Lidar data with optical remote sensing data.

There are many complex fine-structure objects in the ISPRS-
Potsdam dataset based on very high resolution. Volpi [31] pro-
posed a labeling method for dense areas of buildings by learn-
ing the rules for sampling the original resolution from rough
spatial features. Audebert [32] studied how deep convolutional
networks fit the semantic labeling of very high-resolution and
multi-scale remote sensing data. Liu [33] proposed an end-
to-end self-cascaded convolutional neural network (ScasNet),
which effectively marks the buildings from coarse to fine
by correcting the potential residual. Marcos [34] proposed
a CNN architecture of the Rotation Equivariant Vector Field
Network (RotEqNet) based on the image’s prior information
for extracting feature types in any direction.

Although the above studies have achieved good segmenta-
tion accuracy, these methods may excessively compute the pix-
els that distinguish the boundaries of buildings and resulting in
the misclassification of the edge pixel points that should clear
and continuous boundaries, which makes the extraction results
exist such issues as smooth edges and loss of information. In
the classical semantic segmentation network, such as FCNs,
Deeplab, the CNN generally downsamples the input image 16
times and then tries to upsample it back. In more detail, for
Deeplabv3+, the model ends up being a 4x bilinear interpola-
tion upsampling, which is very unfavorable for the prediction
of the object edges. The edge prediction situation is not ideal
for the image segmentation task mentioned in many previous
works. For example, ”Not All Pixels Are Equal: difficult-aware

Semantic Segmentation via Deep Layer Cascade” [35] has
made detailed statistics on semantic segmentation, in which
the pixels are easy to lead to misjudged in classifying, the
edge of the object as shown in red in Fig.1. To improve the
boundary recognition ability of different categories, Chai [36]
replaces the pixel-level optimization method with a distance
map to get sufficient spatial context information. The result of
the building edge is smoother than the post-processing using
a conditional random field (CRF).

Similarly, Marmanis [37] proposed an end-to-end deep
convolution neural network to improve boundary recognition
for different semantic categories. Yuan [38] designed a deep
convolutional network with a simple architecture that fuses
multilayer activation function for pixel-by-pixel prediction. To
enhance the building’s expression ability, the author finally
introduces the output result of the distance function. Li [39]
proposed a novel two-step method to improve extracting build-
ings from remote sensing images. First, an improved model
based on CRF is used to reduce edge misclassification and
then further make full use of the building’s saliency features
to improve edge information expression. Although semantic
segmentation models usually use loss functions to optimize
network parameters, such as cross-entropy and intersection
over-union, they are not sensitive enough to boundary mis-
alignment. Even if the extracting boundary deviates from the
valid 5-10 pixels, it will not significantly affect the value of
the above loss function and common indicators of evaluation.
In order to solve the problems mentioned above, we propose a
corresponding detection model—BAPANet, a boundary-aware
pixel aggregation network. The work-flow is displayed in Fig.
4. It dramatically improves the recognition ability of arbitrarily
shaped buildings and optimizes the boundary quality. The
contributions of this paper include:

(1) a new building shape recognition model based on bound-
ary perception: BAPANet consists of an encoder-decoder and
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Fig.2. Overall architecture of BAPANet.

a residual optimization module.
(2) data augmentation: image morphology transformation is

uesd to improve the robustness and generalization of the deep
learning model.

(3) a new objective optimization function: the hybrid loss
function consists of binary cross-entropy (BCE), intersection
over-union (IoU), and structural similarity (SSIM) loss, which
supervises the training process of object detection on three
levels: pixel level, feature map level, patch level.

II. METHODOLOGY
A. Overview of Network Architecture

We designed the building object recognition
module—Encoder-Decoder network, which combines
low-level detail and high-level global information. The
encoder is composed of the first convolution layer from
ResNet-34 and the basic residual module. Fig. 2 shows the
overall architecture of BAPANet, which can be divided into
two parts: the backbone network and a feature optimization
module. We use the lightweight ResNet-34 as the backbone
network to reduce the computational burden of the model and
improve the efficiency. Merely using such a shallow backbone
network does not have enough receptive field and cannot
extract robust features. BAPANet adds a bridge structure
between encoder and decoder of the backbone network to
enhance the ability of feature expression. It is composed
of three convolutional layers, and each convolutional layer
consists of 512 hole convolutions, followed by a BN layer
and a ReLU activation function layer. Each bridge’s input is
composed of the previous bridge and the up-sampling feature
layer output by the corresponding encoder. The bridge has
the following advantages: the module integrates features of
different scales well, and the perceptive field of the features
will increase.

B. Refine Module
The residual optimization module (Fig.3a) was first pro-

posed for boundary optimization [40] based on local informa-

Fig.3. Comparison of different optimization modules. (a) Local
boundary refinement module (LRM); (b) Multi-scale refine-
ment module (MSRM); (c) We design the architecture of
Encoder-Decoder residual refinement module (EDRRM).

tion. Islam et al. [41] and Deng et al. [42] optimize feature
maps on multiple scales due to the relatively small area of the
classical receptive field. Wang et al. [43] used the pyramid
pooling module in [44] to piece together the pyramid pooling
features of three scales. To avoid loss of detailed information
due to the pooling operation, a multi-scale refinement module
(MSRF, Fig.3b) uses hole convolution to obtain multi-level
information. However, these modules are relatively shallow,
and it is challenging to obtain higher-level information. To
optimize the region’s problem and boundary defects in the
feature map, we designed a new residual optimization module.
The residual refinement module (RRM) utilizes the encoder-
decoder architecture-EDRRM (Fig.3c). The architecture is
similar to the central network architecture, including encoder,
bridge, and decoder. In this way, features of different depths
fuse to combine low-level and high-level semantic information.
We use the max-pooling layer in the encoder and then use
bilinear interpolation in the decoder. The final output of our
model is a feature map of the RRM module.

C. Data Augmentation Module

The fine information obtained from high-resolution im-
agery is better applied to image analysis and interpretation,
bringing new challenges to image segmentation technology.
With the deepening of the neural network, the optimization
parameters will increase, which will easily lead to overfitting.
Overfitting means that the neural network highly fits the
distribution of training data, and it lacks generalization ability.
There are many reasons for the over-fitting of the training
network, and the most direct reasons are the small number
of datasets and poor quality. Later Inception networks [45],
VGG [46], and ResNet all used Scale Jittering, a scale-to-
length-to-width enhancement transformation method. These
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state-of-the-art studies have shown that data augmentation
plays a crucial role in the final recognition performance and
extensive deep network’s generalization ability. Therefore, to
avoid overfitting and the amount of data is small, data augmen-
tation is necessary.Compared with original image recognition,
classification, and segmentation datasets, the existing remote
sensing image datasets are usually small in scale, and it is not
elementary to train an excellent semantic segmentation model
directly.Appropriate data augmentation operations such as
rotation, scaling, and scale transformation improve the model’s
training accuracy and enhance the generalization ability of
the model. We use image morphological transformation to
increase the number of samples in the dataset and increase
the dataset’s diversity, mainly includes the following methods.

1) Random folding: include three methods of horizontal,
vertical and diagonal.

2) Random scaling: image random scaling at most 10%.
3) Random offset: the image is randomly offset by up to

10%.
4) Random stretch: the image along the vertical or horizon-

tal direction randomly pull up to 10%.
After the above four transformations, the 256*256 part of

the image center is intercepted, insufficient to add 0.

D. Objective Function

The problem of scale impacts is ubiquitous, and the objects
of buildings of different sizes have different characteristics in
the application of remote sensing due to the complexity of
space features and scale dependence. The encoder layer of
the CNN convolves and pools the original image to obtain
feature maps of different sizes. The shallow network pays
more attention to details, the high-level network pays more
attention to semantic information, and the high-level semantic
information accurately detects a target, so we use the feature
map on the last convolutional layer to make predictions. The
method exists in most deep networks, such as UNet, PSPNet,
BiSeNet, which use the features of the last layer of the deep
network for image segmentation. The advantage of this method
is that it is fast and requires less memory. Its disadvantage is
that we only focus on the features of the last layer in the
deep network and ignore other layers’ features. The detailed
information improves the accuracy of segmentation to a certain
extent. The design idea of deep-supervised encoding and
decoding uses both low-level features and high-level features
to make predictions at different layers at the same time. The
remote sensing images may have several different sizes, to
distinguish the different goals may require different features.
For simple objects, we need shallow features to detect it.
For complex objects, we need to use sophisticated features
to identify it. The whole process is to first perform a deep
convolution on the original image, and then make predictions
on different feature layers. In the backbone network’s decoder
phase, six feature maps with different resolutions are output,
while RRM only outputs the feature map of the last layer. The
feature maps generated in seven different stages are added to
the loss function for calculation simultaneously. This multi-
layer and multi-loss design method help the network better

converge on the one hand, and it will enable the network to pay
attention to the significance map of different scales to obtain
more robust semantic information. The objective function is
defined as the sum of all outputs:

Ltotal =
∑M
m=1 aml

m

Among them, lmis the loss of the m-th feature map, M is the
number of output feature maps, and amis the weight of each
layer’s output loss. The target detection model is supervised
by seven outputs, i.e., M = 7, which includes the outputs of
six backbone networks and an RRM optimization module’s
output. We define lm as the mixed loss function:

lm = lmbce + lmiou + lmssim

The lbce loss checks each pixel and compares the prediction
result of each pixel category with the label. The loss of the
entire image is the average of the loss of each pixel. The pixel-
level cross-entropy loss function is defined as follows:

lbce(x) = −(ylogf(x) + (1− y)log(1− f(x)))

liou is the commonly used index in semantic segmentation.
It is not only used to determine positive samples and negative
samples but also has scale invariance. The liouat the feature
map level is defined as follows:

liou(x) = − 1
C

∑C
c=1

∑
pixels

ytrueyfalse∑
pixels

(ytrue+yfalse−ytrueyfalse)

C is the number of categories, BCE coefficient is a judgment
index of segmentation effect, and its formula is equivalent
to the intersection ratio of predicted result area and ground
truth area, so it calculates the loss function by taking all
pixels of a category as a whole. Besides, the IoU coefficient
directly takes the segmentation effect evaluation index as a
loss function to supervise the network and ignores many
background pixels when calculating the intersection ratio, thus
solving unbalanced positive and negative samples problems.
If the above two kinds of loss functions are a kind of area
matching metric to supervise the network learning target, we
also use a boundary matching metric to supervise boundary
loss. We use structural similarity to evaluate the predicted and
real boundary pixels. From the perspective of image compo-
sition, the structural information is defined as the property
of object structure independent of brightness and contrast,
and models distortion as a combination of three different
factors: brightness, contrast, and structure. The mean value
was used as an estimate of brightness, the standard deviation
as an estimate of contrast, and the covariance as a structural
similarity measure. Structural similarity index:

SSIM(x) = − (2µxµy+c1)(2σxy+c2)
(µ2

x+µ
2
y+c1)(σ

2
x+σ

2
y+c2)

SSIM is used to learn the structured information between
the target and the ground truth and evaluate the picture quality.
In simple terms, to calculate the structural similarity of the
two images, we need a local window (N * N size), calculate
the structural similarity loss in the window, slide in pixels,
and finally take the average of structural similarity loss of all
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Fig.4. Overview of our proposed method which takes the object’s area and shape of the boundaries into account during training.

windows. The specific calculation method is to represent the
corresponding pixel points of the two pictures as x and y,
where x = {xi : i = 1, ..., N2} and y = {yi : i = 1, ..., N2};
µx and µy , σx and σy are the mean and variance of x and y,
respectively, and σxy is the covariance of x and y. c1=0.012
and c2=0.032 to avoid a 0 denominator. The key to SSIM
loss acting on patch-level is that it focuses on the boundary.
In order to obtain high-quality region segmentation and clear
boundary,the structural similarity loss function is introduced
Structural similarity loss:

lssim(x) = 1− SSIM

The lbce predicts each pixel as an independent sample, while
the liou looks at the final predicted output in a more complete.
The lssim is a patch-level measure that considers the adjacent
local region of each pixel point. The loss of the boundary will
be higher than the weight assigned to the target’s interior or
elsewhere, and it will output clear object boundaries to solve
the boundary blur. BAPANet simultaneously considered three
loss functions lbce, liou,and lssim optimized the network in
three levels (pixel, feature map, and patch) to segment the
target area effectively.

III. RESULTS

The subsequent GL-DenseUNet [47], DenseASPP [48], and
Res2Net [49] all achieved high extraction accuracy in the
field of image segmentation. However, with the increase of
network depth and feature dimension, these methods may over-
compute the pixels that distinguish the building’s boundaries,
resulting in the misclassification of edge pixels that should
have clear and continuous boundaries. In this paper, the
structural similarity loss function is introduced to make full
use of buildings’ edge characteristics and reduce the influence
of the inability to extract the edge information of buildings in
complex scenes, focusing on solving the problem of blurred
boundaries while maintaining the region accuracy.

The dataset of this experiment comes from the institute
national de recherche en Informatique et Automatique [50]
(Inria), Mnih [51], and ISPRS-Potsdam [52]. This dataset con-
tains remote sensing images from residential areas in different
cities in the United States, Austria, and Germany, labeled as
buildings and non-buildings. The Inria aerial image dataset
released in 2018 has a spatial resolution of 0.3m and contains
180 images covering five cities, with 36 high-resolution remote

sensing images. Images from Austin, Chicago, and Vienna
were selected, among which 31 images were used for training,
and five images were used for testing. The pixels of each image
are 5000 × 5000, and the coverage area is about 2.25 km2.
The Massachusetts dataset contains 137 training images and
10 test images with three red, green, and blue bands, all of
which are 1500 pixels long and wide, with a spatial resolution
of 1 m, covering the surface area of about 340 km2. The
Potsdam dataset contains 38 patches, each consisting of a true
orthophoto. We select three bands (red, green, blue) from the
five channels (RGB+NIR+DSM) to experiment and train a
neural network with adam optimizer.

Considering the computer performance, we take 128 pixels
as the step size, crop the test image to 256 × 256 pixels, and
remove the images without buildings to obtain 8899 training
samples and 5332 test samples. The specific information is
shown in Table I.

Table I
INFORMATION ON ALL DATASET IMAGES FOR FOUR

CITIES

Location Resolution
m

Area
km2

Building
quantity

Percent
-age(%)

Austin 0.3 81 20449 14.93
Chicago 0.3 81 39673 24.57
Vienna 0.3 81 6459 46.62
Massachusetts 1.0 330 209907 12.03
Postdam 0.05 3.42 1770 26.28

This experiment is based on the Pytorch deep neural net-
work framework, using a single 11GB GTX 1080Ti graphics
card to complete the model training. After the model training,
the model’s prediction results in five different regions on
the test set are given. To verify the effectiveness of the
proposed method, the results are compared with the four
classic neural network models of SegNet, FRRN-B, FC-
DenseNet, and Deeplabv3+. These models correspond to the
most classical network structure at present. Among them,
SegNet uses VGG16, FRRN-B uses a dual-stream structure
to combine multi-scale context information with pixel-level
precision. FC-DenseNet corresponds to a dense connection
mode, which is a network structure related to multi-branch
structure. Deeplabv3+ uses ResNet as a feature extractor and
uses atrous spatial pyramid pooling technology to form a faster
and more powerful Encoder-Decoder network for semantic
segmentation.Fig.5 shows the results obtained by using five
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Table II
REGION ACCURACY EVALUATION RESULTS

Model Austin Chicago Massachusetts Vienna ISPRS-Potsdam
mIoU F1 mIoU F1 mIoU F1 mIoU F1 mIoU F1

SegNet 71.79 88.51 73.61 85.75 77.33 91.74 57.53 72.68 82.05 90.19
FRRN-B 73.98 89.95 73.02 85.29 79.07 92.69 60.00 74.92 84.34 91.57
FC-DenseNet 75.18 90.46 75.30 86.76 80.11 92.99 62.12 76.72 78.65 88.45
Deeplabv3+ 71.84 88.73 71.25 84.24 73.70 89.87 66.15 80.26 74.36 85.61
BAPANet 78.05 92.00 83.17 91.72 82.54 94.36 86.35 93.86 83.05 90.93

Fig.5. Images of the original true color composite image are displayed and compared the prediction results in five regions
under different deep learning methods. The false positive (FP), true positive (TP), and false negative (FN) are marked in red,
green, and blue, respectively. The yellow rectangles in the original images are enlarged for close-up inspection in Fig. 6.

methods to extract buildings in the image. The buildings in
Austin are all small residential buildings, and all networks
are well classified, among which FC-DenseNet and BAPANet
have higher accuracy. However, the five models have a higher
false detection rate for more full roads. Fig.6 shows the local
extraction results of the building. It is seen from the figure
that most buildings in Chicago are rectangular and regular,
but the buildings have more shadows.BAPANet has done the
best in the integrity of buildings, while the other four models
have identified partial shadows, the integrity of buildings
is reduced. All the five models extract the Massachusetts

buildings with fewer building types and more straightforward
structures; however, the types of features and structure in the
Vienna area are complex; there are many irregular buildings. In
the very high-resolution ISPRS-Potsdam 2D semantic markup
dataset, we found that the FRRN achieves the best building
extraction results, and our proposed method is suboptimal.
Although FC-DenseNet based on dense connection structure
performed second and achieved better segmentation results in
Austin, Chicago, and Massachusetts, it performed poorly in
finer ISPRS-Potsdam. Compared with the other four methods,
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Fig. 6. Local extraction results. A close-up view of the original true-color composite image and classification results is displayed
across five regions. The images are the subset from the yellow rectangles marked in Fig. 4. False negative (FN), true positive
(TP) and false positive (FP) were marked as blue, green, and red, respectively.

BAPANet can better distinguish buildings and backgrounds in
densely populated areas. While reducing the false detection
rate, the edge details of buildings, and the contours of large
irregular buildings can be better extracted.

To evaluate the segmentation accuracy of the building on
datasets, four evaluation indexes, including accuracy, intersec-
tion over-union, F-measure, and mean absolute error (MAE),
were used to evaluate the accuracy of five network models of
SegNet, FRRN-B, FC-DenseNet, Deeplabv3+, and BAPANet.
The first three indexes are used to evaluate the accuracy
of region segmentation, and MAE is used to evaluate the
performance of different loss functions on extracting building
boundaries. MAE [53] represents the average absolute differ-
ence per pixel between the predicted probability map and its
ground truth mask. Given a prediction result map, MAE is
defined as:

MAE = 1
W×H

∑W
i=1

∑H
h=1 |R(j, i)− P (j, i)|

Where R and P are ground truth and its probability image,
respectively, W and H represent the image’s width and height,
and (j, i) denotes the pixel coordinates. The results are shown
in Table 2. It can be seen that compared with the classic image
segmentation model, BAPANet has been improved on all three
indicators. Although the buildings in these three regions are
relatively small and simple in structure, Deeplabv3+ has the
worst performance. The model ends up being a 4x bilinear
interpolation upsampling, which is very unfavorable to pre-
dicting the edge of the object, leading to the severe absence
of small buildings. On the contrary, the performance of SegNet
with a simple structure is more stable. Deeplabv3+ got a
suboptimal result for the Vienna region with many irregular
buildings in a variety of image features and intricate structures.
In contrast, SegNet, with a simple structure, performed the
worst. Synthesizing the evaluation results of the five regions,
we find that the method in this paper can extract the buildings
in Austin, Chicago, and Massachusetts with low-resolution
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structures and low-resolution buildings and the large and
irregular buildings in Vienna. Although the proposed network
for high-resolution images with more complex structures does
not have the best overall accuracy, its ability to identify
buildings is better than other models, as shown in Fig.5.

Fig.7. Illustration of the impact of different loss functions. Red
and blue indicate the possibility of pixels with buildings and
backgrounds, respectively.

We illustrate the effects of three different loss functions in
Fig.6. These heat maps show the loss of each pixel. These
three cols correspond to lbce, lbce+ liou,and lbce+ liou+ lssim,
respectively. lbce is pixel-by-pixel, which helps convergence of
all pixels. lssim is a patch level measure that takes into account
the local neighborhood of each pixel. We use the lbce to keep it
relatively smooth for all pixels while using the to focus more
on foreground targets, while SSIM is used to constrain the loss
near the boundary to predict the structure of the original image
better. To quantitatively evaluate the edge significance of the
segmentation object, a series of F-measures are generated by
binarization of each prediction result with different threshold
values. Fig. 7 shows the likelihood of the predicted outcome.
We can get the result of building segmentation by binarization.

The MAE results in Table IV show that our proposed SSIM-
based hybrid loss function will improve performance, espe-
cially for boundary quality. Also, combining with the results in
Fig.8, data enhancement can improve the accuracy of building
regional segmentation and extract the edge information of
buildings accurately. In summary, although it can be seen that
each network achieve better recognition results, the BAPANet
model proposed in this paper achieves the most accurate
extraction for both Vienna region with complex feature types
and Massachusetts region with a small area, which preserves
the clear boundary and integrity of the building, and solves
the problem that the edge contour of the extraction result is
too smooth.

TABLE III
COMPARISON OF THE EFFICIENCY OF DIFFERENT

NETWORK MODELS

Model Inference (ms) Model size (MB) FPS
SegNet 82 419 43
FRRN-B 120 297 27
FC-DenseNet 173 106 17
Deeplabv3+ 53 235 73
BAPANet 263 332 11

In addition, deep learning methods are suitable for building
extraction tasks with a large amount of accurately labelled
data. It should be pointed out that this method tends to overfit

TABLE IV
BOUNDARY LOSS EVALUATION RESULTS

MAE Configuration
Baseline+lbce Baseline+lbce+

liou

Baseline+lbce+
liou + lssim

Baseline+lbce+
liou + lssim +
augmentation

Austin 0.0459 0.0452 0.0450 0.0428
Chicago 0.0743 0.0711 0.0738 0.0665
Massac-
husetts

0.0626 0.0606 0.0601 0.0567

Vienna 0.0749 0.0749 0.0732 0.0623
ISPRS-
Potsdam

0.0585 0.0557 0.0485 0.0427

when the amount of training data is small, which is also the
disadvantage of data-driven deep learning methods. It is crucial
to study small and efficient CNN models in these scenarios,
and models as large and complex as Deeplabv3+ and Res2Net
are challenging to apply directly. First, the models are too large
and face the problem of insufficient memory. Second, some
scenarios require low latency or fast response time. As shown
in Fig. 8, with the model’s training, the overall accuracy of
BAPANet in these five datasets is significantly higher than that
of the other four methods. However, the results in Table III
show that the proposed network is at the lowest level, both in
terms of the time used to train the model and the prediction’s
timeliness. Therefore, it is an important research direction to
reduce the size of the model and improve the speed and low
latency of the model.

Fig.9. Qualitative comparison of the proposed method with
different loss function. From top to bottom, the segmentation
results of Austin, Chicago, Massachusetts, Vienna, and Pots-
dam.

In Table IV, we show that under the MAE indicator, we
compare the quantitative evaluation results of different loss



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2020.3017934, IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2020 9

Fig.8. Plots showing the accuracy of the five models while training the datasets with increasing iterations.

functions. To the best of our knowledge, the backbone network
using only the Resnet-34 module without any post-processing
methods (such as CRF).It can be seen that our method can
detect buildings in various situations well. It is also worth
noting that due to the effect of contour loss, our results have
obvious boundaries and more significant areas for precise
positioning. In Fig 9, compared with the baseline BCE co-
efficient result, adding the IoU metric to the loss function
eliminate background interference, while SSIM loss gets a
better boundary.

IV. DISCUSSION

The current semantic segmentation algorithms focus on the
accuracy of the building area and ignore the building’s bound-
ary quality. Moreover, the deep neural network model may
over-calculate the pixel points that distinguish the boundaries
of buildings, resulting in the misclassification of the edge pix-
els that should have clear and continuous boundaries, making
the extraction results have problems such as smooth edges
and loss of detailed information. To solve the above problems,
we propose a building boundary perception detection network
with arbitrary shape. The model is divided into two stages: the
first stage is the prediction network, which is used to generate
rough prediction results; the second stage is an excellent
network that follows the prediction network to refine further
the rough results obtained in the previous step to obtain a more
accurate result. The network structure in these two phases
is roughly the same, and both are classic Encoder-Decoder
networks. Finally, four indexes are used to comprehensively

evaluate the accuracy of the model region segmentation and
the quality of the building boundary.

The quantitative evaluation results show that this paper’s
method reduces the impact of image noise while retaining the
precise boundaries and integrity of the building and solves the
problem of excessively smooth edge contours of the extracted
results to a certain extent. Moreover, we comprehensively
evaluate the model performance before and after adding the
RRF module. The evaluation results show in Table V.

TABLE V
COMPARISON OF THE EFFICIENCY OF DIFFERENT

LOSS FUNCTION WITH REFINE MODULE

Model Inference (ms) Model size (MB) FPS
Baseline+ lbce 241 - -
Baseline +
lbce + liou

246 - -

Baseline +
lbce + liou +
lssim

249 330 11

Baseline +
lbce + liou +
lssim +
RRF (BAPANET )

263 332 11

Where ”Inference” and ”FPS” represent the time required
for one iteration and the number of frames predicted per
second, to evaluate further the image of the building boundary
recognition by the RRF module, we get the MAE results of the
three regions Vienna, Massachusetts, and Potsdam, as shown
in Table VI. The results of building edge detection in Fig.
10. The yellow, the blue, and green lines delineate the actual
building contour and the prediction results of adding RRF and
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no RRF module. We found that adding RRF modules can
improve the building’s edge detection performance.

To further confirm the availability of BAPANET, we also
provide several loss functions that optimize the boundaries of
objects and detect small objects, such as BF1 [54] metric,
Hausdorff distance loss [55], and Lovasz-Softmax [56]. We
proposed that the model obtained the best results from the
evaluation results in Table VII.

TABLE VI
COMPARISON OF THE MAE METRIC WITH REFINE

MODULE

Model MAE
Vienna Massachusetts Potsdam

Baseline+lbce +
liou + lssim

0.0686 0.0604 0.0456

Baseline+lbce +
liou + lssim +
RRF (BAPANET )

0.0667 0.0583 0.0455

Fig.10. Example: Three building area where blue lines de-
lineate the building extraction results with RRF module, and
yellow lines denote the ground truth.

Because of the complexity and diversity of target informa-
tion in high-resolution imagery, it is challenging for different

segment objects. In general, the more considerable the amount
of data, the easier it is for the model to learn representative
features. From Table IV and Fig.12, we will also find that the
model with enhanced data dramatically improves the accuracy
of the building. Besides, the BAPANet model also achieved
the most accurate extraction of large buildings with irregular
shapes. The ResNet-34 structure based on Encoder-Decoder
can strengthen features and further improve the ability to learn
features. The mixed loss function of binary cross-entropy, in-
tersection the effect of over-smoothing of the sample boundary
in the building extraction task to a certain extent have a certain
universality.

TABLE VII
COMPARISON OF THE EFFICIENCY OF DIFFERENT

NETWORK MODELS

Loss function Vienna
OA mIoU F1

Lbce+iou+ssim 94.28 88.53 94.26
LBF 90.76 82.25 90.74
LHDDT 90.74 82.20 90.73
Llovasz 91.38 83.25 91.37

Fig.11. Example: Four different loss function where blue lines
delineate the building extraction results, and yellow lines
denote the ground truth.

The traditional method is to start with the edge line features
of the building and perform a series of analysis and processing
on the image’s edge line features to extract the building.For
example, Andrea [57] proposed a building extraction algorithm
based on the analysis and merging of image edge segments;
Chungan [58] proposed applying prior knowledge to extract
rectangular elements with regular geometric shapes in remote
sensing images. Although the traditional building extraction
methods have achieved excellent results in specific application
backgrounds, they cannot effectively integrate the context-
dependent relationships of building edge line features for
building extraction. Although the building extraction results
based on the fusion of high-resolution imagery and deep
neural networks perform well, this success is mostly due
to the emergence of new neural network structures, such as
ResNet, Inception, DenseNet. Designing a high-performance
neural network requires a lot of expertise and trial and error,
and the cost is exceptionally high, limiting the application of
neural networks on many problems. There is still development
potential for further research on improving the extraction accu-
racy of buildings by automatically designing high-performance
network structures based on the sample set.
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Fig.12. Statistical results of building accuracy of five test sets
with different training data sizes. The orange, green, and cyan
colors in the above figure indicate that the training data set is
doubled, halved, and remains unchanged.

V. CONCLUSION

This paper proposes an original end-to-end boundary per-
ception model-BAPANet, and a mixed loss function to mitigate
the impact of overly smooth sample boundaries in build-
ing extraction tasks. The proposed BAPANet is a predictive
optimization architecture consisting of two components: a
predictive network and an optimization module. Combined
with the mixing loss function, BAPANet will extract large
and irregular buildings accurately. Experimental results on
five datasets show that the network architecture is superior to
the other four optimal methods in both region and boundary
perception metrics. Besides, our proposed model is modular,
and it can easily be extended or adapted to other tasks by
replacing predictive networks or optimization modules.
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